Электродвигатели объяснили

Электродвигатели имеют только одну движущуюся часть, но рассмотрение трех типов и принципов работы каждого из них доказывает, что это далеко не простые устройства.

Дэн Эдмундс Опубликовано: 5 апреля 2022 г.

электродвигатель в разрезе

Любители автомобилей так долго были погружены в язык двигателей внутреннего сгорания, что неумолимый переход на электрификацию требует настройки нашей базы знаний. Многие из нас знакомы с ритмом всасывания-сжимания-выдоха четырехтактного двигателя, который приводит в действие большинство сегодняшних водителей, в то время как среди нас есть любители снегоходов и подвесных моторов, которые, вероятно, могут объяснить внутреннюю работу двухтактного двигателя. Некоторые ботаники могут даже иметь представление о эпитрохоидальных махинациях роторного двигателя Ванкеля, но опыт обычного редуктора с электродвигателями может начаться и закончиться с последним отказом стартера.

Все типы двигателей электромобилей состоят из двух основных частей. Статор — это стационарная внешняя оболочка двигателя, корпус которой крепится к шасси наподобие блока цилиндров. Ротор представляет собой единственный вращающийся элемент и аналогичен коленчатому валу в том, что он передает крутящий момент через трансмиссию на дифференциал.

Большинство электромобилей полагаются на блок с прямым приводом (с одним передаточным числом), чтобы снизить скорость вращения между двигателем и колесами. Как и двигатели внутреннего сгорания, электродвигатели наиболее эффективны при низких оборотах и ​​более высоких нагрузках. В то время как электромобиль может иметь приемлемый запас хода на одной передаче, более тяжелые пикапы и внедорожники, предназначенные для буксировки прицепов, увеличат запас хода благодаря многоступенчатой ​​трансмиссии на скорости шоссе. Сегодня только Audi e-tron GT и Porsche Taycan используют двухступенчатую коробку передач. Многоступенчатые потери и затраты на разработку являются причинами редкости электромобилей с более чем одной передачей, но мы прогнозируем, что это изменится.

Унифицированность двигателей электромобилей

Все три основных типа электродвигателей используют трехфазный переменный ток для создания вращающегося магнитного поля (RMF), частота и мощность которого контролируются силовой электроникой, реагирующей на нажатие педали акселератора. Статоры содержат многочисленные параллельные пазы, заполненные соединенными между собой петлями медных обмоток. Это могут быть громоздкие пучки круглой медной проволоки или аккуратные шпилькообразные медные вставки квадратного сечения, увеличивающие как плотность заполнения, так и прямой контакт между проводами внутри канавок. Более плотные витки улучшают способность к крутящему моменту, а более аккуратное переплетение на концах приводит к меньшему объему и меньшему общему корпусу.

Читайте также:
Что Acura должна делать с NSX

RMF

Аккумуляторы являются устройствами постоянного тока (DC), поэтому силовая электроника электромобиля включает инвертор постоянного тока в переменный, чтобы обеспечить статор переменным током, необходимым для создания важнейшего переменного RMF. Но стоит отметить, что эти электродвигатели также являются генераторами, а это означает, что колеса будут вращать ротор в статоре в обратном направлении, чтобы индуцировать RMF в другом направлении, которое возвращает мощность обратно через преобразователь переменного тока в постоянный, чтобы отправить мощность в батарея. Этот процесс, известный как рекуперативное торможение, создает сопротивление, замедляющее автомобиль. Регенерация не только играет центральную роль в расширении запаса хода электромобиля, это в значительной степени целый шарик воска, когда речь идет о высокоэффективных гибридах, потому что большое количество регенерации улучшает показатели экономии топлива EPA. Но в реальном мире рекуперация менее эффективна, чем выбег, что позволяет избежать потерь каждый раз, когда энергия проходит через двигатель и преобразователь при сборе кинетической энергии.

Три типа электродвигателей

Типы двигателей можно разделить по фундаментальным различиям роторов, которые представляют собой совершенно разные способы превращения RMF статора в фактическое вращательное движение. Эти различия на самом деле достаточно разительны, чтобы отдать должное нашей первоначальной аналогии с четырьмя циклами, двумя циклами и Ванкеля. В асинхронной категории у нас есть асинхронные двигатели, в то время как синхронная группа включает двигатели с постоянными магнитами и двигатели с токовым возбуждением.

Асинхронные двигатели существуют с 19 века. Здесь ротор содержит продольные пластины или стержни из проводящего материала, чаще всего из меди, но иногда из алюминия. RMF статора индуцирует ток в этих пластинах, который, в свою очередь, создает электромагнитное поле (ЭДС), которое начинает вращаться внутри RMF статора. Асинхронные двигатели известны как асинхронные двигатели, потому что ЭДС индукции и связанный с ней вращающий момент могут существовать только тогда, когда скорость ротора отстает от RMF. Такие двигатели распространены, потому что им не нужны редкоземельные магниты и они относительно дешевы в производстве, но их сложнее охлаждать при длительных высоких нагрузках и они по своей природе менее эффективны на низких скоростях.

Читайте также:
Состояние механической коробки передач в 2020 году и далее

Как следует из названия, роторы двигателей с постоянными магнитами обладают собственным магнетизмом. Для создания магнитного поля ротора не требуется энергии, что делает их гораздо более эффективными на низкой скорости. Такие роторы также вращаются синхронно с RMF статора, что делает их синхронными. А вот с простой обмоткой ротора магнитами поверхностного монтажа возникают проблемы. Например, для этого требуются более крупные магниты, а удерживать ротор на высокой скорости становится все труднее по мере того, как все становится тяжелее. Но более серьезной проблемой является так называемая «обратная ЭДС» на высоких скоростях, при которой обратное электромагнитное магнитное поле добавляет сопротивление, которое ограничивает максимальную мощность и создает избыточное тепло, которое может повредить магниты.

Чтобы бороться с этим, большинство двигателей EV с постоянными магнитами оснащены внутренними постоянными магнитами (IPM), которые попарно вставляются в продольные V-образные пазы, расположенные в виде нескольких лепестков прямо под поверхностью железного сердечника ротора. Прорези обеспечивают безопасность IPM на высокой скорости, но преднамеренно сформированные области между магнитами создают противодействующий крутящий момент. Магниты либо притягиваются, либо отталкиваются от других магнитов, но обычное сопротивление, сила, которая прикрепляет магнит к ящику с инструментами, притягивает лепестки железного ротора к RMF. IPM выполняют работу на более низких скоростях, а реактивный крутящий момент берет верх на высоких скоростях. Чтобы вы не думали, что это новинка, Prius использует их.

Окончательный тип двигателя не существовал в электромобилях до недавнего времени, потому что общепринятое мнение считало, что бесщеточные двигатели, которые описаны выше, были единственным жизнеспособным вариантом для электромобиля. BMW недавно изменила эту тенденцию, установив щеточные синхронные двигатели переменного тока с токовым возбуждением на новые модели i4 и iX. Ротор этого типа взаимодействует с RMF статора точно так же, как ротор с постоянными магнитами, но в роторе отсутствуют постоянные магниты. Вместо этого он имеет шесть широких медных лепестков, питающихся от батареи постоянного тока для создания необходимой ЭДС. Для этого требуются контактные кольца и подпружиненные щетки на валу ротора, что заставило других отказаться от этого подхода из-за опасений по поводу износа щеток и связанной с ним пыли. Не будет ли здесь проблемой износ щеток? Это еще предстоит выяснить, но мы в этом сомневаемся. Массив щеток изолирован в изолированном отсеке со съемной крышкой, обеспечивающей легкий доступ. Отсутствие постоянных магнитов позволяет избежать проблем, связанных с ростом стоимости редкоземельных металлов и воздействием добычи полезных ископаемых на окружающую среду. Эта схема также позволяет варьировать силу магнитного поля ротора, что обеспечивает дальнейшую оптимизацию. Тем не менее, для питания этого ротора требуется мощность, что делает эти двигатели менее эффективными, особенно на низких скоростях, когда энергия, необходимая для создания поля, составляет больший процент от общего потребления.

Читайте также:
Молниеносный круг 2014: мы атакуем ВИР 25 горячими автомобилями

Появление синхронного двигателя переменного тока с возбуждением током произошло настолько недавно в короткой истории электромобилей, что показывает, насколько рано мы находимся на кривой развития. Есть много места для свежих идей, и уже были сделаны важные повороты, не в последнюю очередь включая отход Теслы от концепции асинхронного двигателя, которая является основой для ее собственного бренда и логотипа, к синхронным двигателям с постоянными магнитами. И нам едва исполнилось десятилетие в современной эре электромобилей — мы только начинаем.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: